Structure and Function of Stator Units of the Bacterial Flagellar Motor

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Structure and Function of Stator Units of the Bacterial Flagellar Motor. / Santiveri, Mònica; Roa-Eguiara, Aritz; Kühne, Caroline; Wadhwa, Navish; Hu, Haidai; Berg, Howard C; Erhardt, Marc; Taylor, Nicholas M I.

I: Cell, Bind 183, Nr. 1, 2020, s. 244-257.e16.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Santiveri, M, Roa-Eguiara, A, Kühne, C, Wadhwa, N, Hu, H, Berg, HC, Erhardt, M & Taylor, NMI 2020, 'Structure and Function of Stator Units of the Bacterial Flagellar Motor', Cell, bind 183, nr. 1, s. 244-257.e16. https://doi.org/10.1016/j.cell.2020.08.016

APA

Santiveri, M., Roa-Eguiara, A., Kühne, C., Wadhwa, N., Hu, H., Berg, H. C., Erhardt, M., & Taylor, N. M. I. (2020). Structure and Function of Stator Units of the Bacterial Flagellar Motor. Cell, 183(1), 244-257.e16. https://doi.org/10.1016/j.cell.2020.08.016

Vancouver

Santiveri M, Roa-Eguiara A, Kühne C, Wadhwa N, Hu H, Berg HC o.a. Structure and Function of Stator Units of the Bacterial Flagellar Motor. Cell. 2020;183(1):244-257.e16. https://doi.org/10.1016/j.cell.2020.08.016

Author

Santiveri, Mònica ; Roa-Eguiara, Aritz ; Kühne, Caroline ; Wadhwa, Navish ; Hu, Haidai ; Berg, Howard C ; Erhardt, Marc ; Taylor, Nicholas M I. / Structure and Function of Stator Units of the Bacterial Flagellar Motor. I: Cell. 2020 ; Bind 183, Nr. 1. s. 244-257.e16.

Bibtex

@article{bed387dd8dfb454e9f44fdb4b963814b,
title = "Structure and Function of Stator Units of the Bacterial Flagellar Motor",
abstract = "Many bacteria use the flagellum for locomotion and chemotaxis. Its bidirectional rotation is driven by a membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport, and how these changes power rotation of the flagellum remain unknown. Here, we present ~3 {\AA}-resolution cryoelectron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a detailed mechanistic model for motor function and switching of rotational direction.",
author = "M{\`o}nica Santiveri and Aritz Roa-Eguiara and Caroline K{\"u}hne and Navish Wadhwa and Haidai Hu and Berg, {Howard C} and Marc Erhardt and Taylor, {Nicholas M I}",
year = "2020",
doi = "10.1016/j.cell.2020.08.016",
language = "English",
volume = "183",
pages = "244--257.e16",
journal = "Cell",
issn = "0092-8674",
publisher = "Cell Press",
number = "1",

}

RIS

TY - JOUR

T1 - Structure and Function of Stator Units of the Bacterial Flagellar Motor

AU - Santiveri, Mònica

AU - Roa-Eguiara, Aritz

AU - Kühne, Caroline

AU - Wadhwa, Navish

AU - Hu, Haidai

AU - Berg, Howard C

AU - Erhardt, Marc

AU - Taylor, Nicholas M I

PY - 2020

Y1 - 2020

N2 - Many bacteria use the flagellum for locomotion and chemotaxis. Its bidirectional rotation is driven by a membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport, and how these changes power rotation of the flagellum remain unknown. Here, we present ~3 Å-resolution cryoelectron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a detailed mechanistic model for motor function and switching of rotational direction.

AB - Many bacteria use the flagellum for locomotion and chemotaxis. Its bidirectional rotation is driven by a membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport, and how these changes power rotation of the flagellum remain unknown. Here, we present ~3 Å-resolution cryoelectron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a detailed mechanistic model for motor function and switching of rotational direction.

U2 - 10.1016/j.cell.2020.08.016

DO - 10.1016/j.cell.2020.08.016

M3 - Journal article

C2 - 32931735

VL - 183

SP - 244-257.e16

JO - Cell

JF - Cell

SN - 0092-8674

IS - 1

ER -

ID: 248766355