Nuclear and nuclear reprogramming during the first cell cycle in bovine nuclear transfer embryos

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • Olga Østrup
  • Ida Petrovicova
  • Frantisek Strejcek
  • Martin Morovic
  • Andrea Lucas-Hahn
  • Erika Lemme
  • Bjorn Petersen
  • Heiner Niemann
  • Jozef Laurincik
  • Poul Hyttel
Abstract The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed at 0.5, 1, 2, 3, 4, 8, 12, and 16 h postactivation (hpa). Parthenogenetic (PA) embryos were used as control. The SCNT and PA embryos were processed for lacmoid staining, autoradiography, transmission electron microscopy (TEM), and immunofluorescence localization of: upstream binding factor (UBF) and fibrillarin at 4 and 12 hpa. Likewise, starved and nonstarved fibroblasts were processed for autoradiography and TEM. The fibroblasts displayed strong transcriptional activity and active fibrillogranular nucleoli. None of the reconstructed embryos, however, displayed transcriptional activity. In conclusion, somatic cell nuclei introduced into enucleated oocytes displayed chromatin condensation, partial nuclear envelope breakdown, nucleolar desegregation and transcriptional quiescence already at 0.5 hpa. Somatic cell cytoplasm remained temporally attached to introduced nucleus and nucleolus was partially restored indicating somatic influence in the early SCNT phases. At 1-3 hpa, chromatin gradually decondensed toward the nucleus periphery and nuclear envelope reformed. From 4 hpa, the somatic cell nucleus gained a PN-like appearance and displayed NPBs suggesting ooplasmic control of development.
OriginalsprogEngelsk
TidsskriftCloning and Stem Cells
Vol/bind11
Udgave nummer3
Sider (fra-til)367-375
Antal sider9
ISSN1536-2302
DOI
StatusUdgivet - 2009

ID: 14306955