5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

The effects of serotonin (5-HT) on intrinsic properties of spinal motoneurons were investigated with intracellular recordings in a slice preparation from adult turtles. In 55% of the cells that were recorded, addition of 5-HT to the extracellular medium promoted plateau potentials as revealed by the response to depolarizing current pulses applied through the intracellular electrode. In the remaining 45% of cells, 5-HT had an inhibitory effect. However, when tested with an applied electric field that preferentially polarizes distal dendrites, 5-HT facilitated plateau potentials in 100% of the cells. Plateau potentials were also promoted by 5-HT focally applied on a dendrite by iontophoresis. Applied near the soma, 5-HT either promoted plateau potentials or inhibited spike generation. The latter effect was accompanied by a decrease in input resistance. Voltage-clamp recordings showed that the facilitation of plateau potentials mediated by L-type Ca2+ channels was due to activation of 5-HT2 receptors. These findings show that 5-HT regulates intrinsic properties of motoneurons in opposite ways: activation of 5-HT receptors in the soma region inhibits spike generation and plateau potentials, while activation of 5-HT2 receptors in the dendrites and the soma region promotes spiking by facilitation of plateau potentials mediated by L-type Ca2+ channels.

OriginalsprogEngelsk
TidsskriftJournal of Neurophysiology
Vol/bind89
Udgave nummer2
Sider (fra-til)954-959
Antal sider6
ISSN0022-3077
DOI
StatusUdgivet - 1 feb. 2003

ID: 237698668