Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation. We identified > 22,000 phosphosites, revealing orthologous protein phosphorylation and overlapping signaling pathways regulated by exercise. This included two conserved phosphosites on stromal interaction molecule 1 (STIM1), which we validate as AMPK substrates. Furthermore, we demonstrate that AMPK-mediated phosphorylation of STIM1 negatively regulates store-operated calcium entry, and this is beneficial for exercise in Drosophila. This integrated cross-species resource of exercise-regulated signaling in human, mouse, and rat skeletal muscle has uncovered conserved networks and unraveled crosstalk between AMPK and intracellular calcium flux.
Originalsprog | Engelsk |
---|---|
Artikelnummer | e102578 |
Tidsskrift | E M B O Journal |
Vol/bind | 38 |
Udgave nummer | 24 |
Antal sider | 20 |
ISSN | 0261-4189 |
DOI | |
Status | Udgivet - 2019 |
Bibliografisk note
CURIS 2019 NEXS 262
© 2019 The Authors.
- Det Natur- og Biovidenskabelige Fakultet
Forskningsområder
Links
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912027/pdf/EMBJ-38-e102578.pdf
Forlagets udgivne version
ID: 225956874