Increased skeletal muscle capillarization enhances insulin sensitivity

Research output: Contribution to journalJournal articleResearchpeer-review

Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity. Skeletal muscle specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist Prazosin to the drinking water of Sprague Dawley rats (n=33) while 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-week Prazosin treatment, which ensured that Prazosin was cleared from the blood stream. Whole-body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]-Glucose during the plateau phase of the clamp. Whole-body insulin sensitivity increased by ~24% and insulin-stimulated skeletal muscle 2-deoxy-[(3)H]-Glucose disposal increased by ~30% concomitant with a ~20% increase in skeletal muscle capillarization. Adipose tissue insulin sensitivity was not affected by the treatment. Insulin-stimulated muscle glucose uptake was enhanced independent of improvements in skeletal muscle insulin signaling to glucose uptake and glycogen synthesis, suggesting that the improvement in insulin-stimulated muscle glucose uptake could be due to improved diffusion conditions for glucose in the muscle. The Prazosin treatment did not affect the rats on any other parameters measured. We conclude that an increase in skeletal muscle capillarization is associated with increased insulin sensitivity. These data point towards the importance of increasing skeletal muscle capillarization for prevention or treatment of type 2 diabetes.

Original languageEnglish
JournalAmerican Journal of Physiology: Endocrinology and Metabolism
Volume307
Issue number12
Pages (from-to)E1105-E1116
Number of pages12
ISSN0193-1849
DOIs
Publication statusPublished - 2014

ID: 128942389