Atomic Densities, Polarizabilities, and Natural Orbitals Derived from Generalized Sturmian Calculations

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

  • John Scales Avery
  • James Emil Avery
  • Vincenzo Aquilanti
  • Andrea Caligiana
The generalized Sturmian method for atomic and
molecular electronic structure calculations is a direct configuration
interaction method in which the configurations are chosen to be
isoenergetic solutions of an approximate N-electron Schrödinger
equation with a weighted potential, $\beta_\nu V_0$. The weighting
factors $\beta_\nu$ are especially chosen so that all the
configurations in the basis set correspond to the same energy
regardless of their quantum numbers. In this paper, the generalized
Sturmian method is used to calculate excited states, densities,
polarizabilities, and natural orbitals of few-electron atoms and ions.
OriginalsprogEngelsk
BogserieAdvances in Quantum Chemistry
Vol/bind47
Sider (fra-til)157-176
ISSN0065-3276
StatusUdgivet - 2004

ID: 1245394