Proteomic biomarker discovery in 1000 human plasma samples with mass spectrometry

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Ornella Cominetti, Antonio Núñez Galindo, John Corthésy, Sergio Oller Moreno, Irina Irincheeva, Armand Valsesia, Arne Astrup, Wim H M Saris, Jörg Hager, Martin Kussmann, Loïc Dayon

The overall impact of proteomics on clinical research and its translation has lagged behind expectations. One recognized caveat is the limited size (subject numbers) of (pre)clinical studies performed at the discovery stage, the findings of which fail to be replicated in larger verification/validation trials. Compromised study designs and insufficient statistical power are consequences of the to-date still limited capacity of mass spectrometry (MS)-based workflows to handle large numbers of samples in a realistic time frame, while delivering comprehensive proteome coverages. We developed a highly automated proteomic biomarker discovery workflow. Herein, we have applied this approach to analyze 1000 plasma samples from the multicentered human dietary intervention study "DiOGenes". Study design, sample randomization, tracking, and logistics were the foundations of our large-scale study. We checked the quality of the MS data and provided descriptive statistics. The data set was interrogated for proteins with most stable expression levels in that set of plasma samples. We evaluated standard clinical variables that typically impact forthcoming results and assessed body mass index-associated and gender-specific proteins at two time points. We demonstrate that analyzing a large number of human plasma samples for biomarker discovery with MS using isobaric tagging is feasible, providing robust and consistent biological results.

OriginalsprogEngelsk
TidsskriftJournal of Proteome Research
Vol/bind15
Udgave nummer2
Sider (fra-til)389-399
Antal sider11
ISSN1535-3893
DOI
StatusUdgivet - 2016

Bibliografisk note

CURIS 2016 NEXS 065

ID: 156372677