Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Determinants of human adipose tissue gene expression : impact of diet, sex, metabolic status, and cis genetic regulation. / Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José; Roussel, Balbine; Combes, Marion; Valle, Carine; Villa-Vialaneix, Nathalie; Iacovoni, Jason S; Martinez, J Alfredo; Holst, Claus; Astrup, Arne; Vidal, Hubert; Clément, Karine; Hager, Jorg; Saris, Wim H M; Langin, Dominique.

In: P L o S Genetics, Vol. 8, No. 9, 2012, p. e1002959.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Viguerie, N, Montastier, E, Maoret, J-J, Roussel, B, Combes, M, Valle, C, Villa-Vialaneix, N, Iacovoni, JS, Martinez, JA, Holst, C, Astrup, A, Vidal, H, Clément, K, Hager, J, Saris, WHM & Langin, D 2012, 'Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation', P L o S Genetics, vol. 8, no. 9, pp. e1002959. https://doi.org/10.1371/journal.pgen.1002959

APA

Viguerie, N., Montastier, E., Maoret, J-J., Roussel, B., Combes, M., Valle, C., Villa-Vialaneix, N., Iacovoni, J. S., Martinez, J. A., Holst, C., Astrup, A., Vidal, H., Clément, K., Hager, J., Saris, W. H. M., & Langin, D. (2012). Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation. P L o S Genetics, 8(9), e1002959. https://doi.org/10.1371/journal.pgen.1002959

Vancouver

Viguerie N, Montastier E, Maoret J-J, Roussel B, Combes M, Valle C et al. Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation. P L o S Genetics. 2012;8(9):e1002959. https://doi.org/10.1371/journal.pgen.1002959

Author

Viguerie, Nathalie ; Montastier, Emilie ; Maoret, Jean-José ; Roussel, Balbine ; Combes, Marion ; Valle, Carine ; Villa-Vialaneix, Nathalie ; Iacovoni, Jason S ; Martinez, J Alfredo ; Holst, Claus ; Astrup, Arne ; Vidal, Hubert ; Clément, Karine ; Hager, Jorg ; Saris, Wim H M ; Langin, Dominique. / Determinants of human adipose tissue gene expression : impact of diet, sex, metabolic status, and cis genetic regulation. In: P L o S Genetics. 2012 ; Vol. 8, No. 9. pp. e1002959.

Bibtex

@article{b1c2376a878744a982b37573b576a44c,
title = "Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation",
abstract = "Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases.",
author = "Nathalie Viguerie and Emilie Montastier and Jean-Jos{\'e} Maoret and Balbine Roussel and Marion Combes and Carine Valle and Nathalie Villa-Vialaneix and Iacovoni, {Jason S} and Martinez, {J Alfredo} and Claus Holst and Arne Astrup and Hubert Vidal and Karine Cl{\'e}ment and Jorg Hager and Saris, {Wim H M} and Dominique Langin",
note = "IHE 2012 015",
year = "2012",
doi = "10.1371/journal.pgen.1002959",
language = "English",
volume = "8",
pages = "e1002959",
journal = "P L o S Genetics",
issn = "1553-7390",
publisher = "Public Library of Science",
number = "9",

}

RIS

TY - JOUR

T1 - Determinants of human adipose tissue gene expression

T2 - impact of diet, sex, metabolic status, and cis genetic regulation

AU - Viguerie, Nathalie

AU - Montastier, Emilie

AU - Maoret, Jean-José

AU - Roussel, Balbine

AU - Combes, Marion

AU - Valle, Carine

AU - Villa-Vialaneix, Nathalie

AU - Iacovoni, Jason S

AU - Martinez, J Alfredo

AU - Holst, Claus

AU - Astrup, Arne

AU - Vidal, Hubert

AU - Clément, Karine

AU - Hager, Jorg

AU - Saris, Wim H M

AU - Langin, Dominique

N1 - IHE 2012 015

PY - 2012

Y1 - 2012

N2 - Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases.

AB - Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases.

U2 - 10.1371/journal.pgen.1002959

DO - 10.1371/journal.pgen.1002959

M3 - Journal article

C2 - 23028366

VL - 8

SP - e1002959

JO - P L o S Genetics

JF - P L o S Genetics

SN - 1553-7390

IS - 9

ER -

ID: 40837741