Table of contents

Preface..3

Acknowledgements..5

Table of contents..7

List of publications..11

Contribution to papers..12

Abbreviations..13

Definition of selected terms...14

Summary...15

Resumé (Danish summary)...17

Thesis at a glance..19

Background...21

 Demography and aging...21
 Geriatric medical patients..21
 Sarcopenia ..22
 Definition and diagnosis of sarcopenia...23
 Sarcopenia case-finding...24
 Prevalence of sarcopenia..24
 Pathology: development of sarcopenia...26
 Primary sarcopenia...27
 Secondary sarcopenia...28
 Dietary intake..28
 Physical activity and sedentary time...30
 Bedrest in acute illness and the catabolic crisis model............................30
 Consequences of sarcopenia..32
 Management – combination of protein intake and resistance training..........33
 Adaptive response to resistance training..34
 Protein to increase the adaptive response to resistance training...............34

Knowledge gaps focused on in this thesis..37

Objectives..39

Research methods...41

 Study populations and study designs...41
Results

Paper I – SARC-F study
 Feasibility and prevalence of risk of sarcopenia
 Characteristics of the group at risk of sarcopenia

Paper II – Systematic review & updated literature search
 Systematic review, Paper II
 Updated literature search
 Combined evidence

Paper IV – PEPOP study
 Participants
 Compliance and confounders
 Outcome measures
 Intention-to-treat analysis
 Analysis of covariance for primary and secondary endpoints
 Per-protocol analysis
 Other subgroup analysis – Nutritional risk and sarcopenic participants
 Observational, explorative analysis

Paper V – DF-BIA vs. DXA
 Participants
 Replicate measurements
Direct comparisons and monitoring changes in body composition ...65

Discussion ..69

Protein dose, quality, and time of consumption ..69
 Protein dose ..69
 Protein quality ...71
 Protein timing and daily distribution ...72

Importance of study population characteristics ..75
 Influence of habitual dietary protein intake ..75
 Influence of training status and preconditioning ...76
 Influence of gender ...77

Influence of carbohydrate consumption ...78
 Independent effect of carbohydrate ...78
 Effect of co-ingestion of protein and carbohydrate ..79

Challenges, limitations, and generalizability ..81
 Recruitment of and compliance in geriatric medical patients ...81
 Recruitment of geriatric medical patients for studies ...81
 Compliance in the PEPOP study ...82
 Motivators and barriers to high compliance ...83
 Choice of endpoints and measurement tools ..84
 Primary and secondary endpoints in the PEPOP study ..84
 Clinically relevant changes ..86
 Measurement of body composition with DF-BIA and DXA ...86
 Confounding factors and generalizability in geriatric medical patients88
 Acute medical condition ..88
 Physical activity and dietary intake in RCTs combining RT with PrS ...89
 Vitamin D supplementation ...89

Implications for clinical practice ..90
 Focus on sarcopenia diagnosis and management ..90
 Sarcopenia case-finding – screening for risk ..91
 Resistance training during and after hospital admission ..92
 Protein intake during and after hospital admission ...93

Conclusions ..95

Perspectives for future research ...97
 Focus areas in studies with SARC-F ...97
 Focus areas in studies investigating treatment effects of PrS and RT ..97
 Implications and focus areas for research with BIA and DXA ...99

References ..101
Appendix 1: Paper I & Supplementary Table 1..119
Appendix 2: Paper II & Supplementary Table 1-2..141
Appendix 3: Paper III & Supplementary Figure 1..157
Appendix 4: Paper IV & Supplementary Table 1-5 and Supplementary Figure 1..............173
Appendix 5: Paper V ..217
This thesis is based on a systematic review and three original studies, described in the following five papers. Moreover, it includes an updated literature search to complement the findings of the systematic review. The papers will be referred to in the text by their respective Roman numerals and/or short title. Permission to reprint the original articles has been obtained from the respective journals.

STUDY I

Paper I

Short title in thesis: SARC-F study

SYSTEMATIC REVIEW

Paper II

Short title in thesis: Systematic review

STUDY II

Paper III

Paper IV

Short title in thesis: PEPOP study

Acronym for ‘Protein and Exercise is Positive for Older People’

STUDY III

Paper V

Short title in thesis: DF-BIA vs. DXA
Contributions to the papers

Paper I
JG, AMB, and AV designed the study; AAQ collected data under the supervision of **JG** and AV; **JG** analyzed data; **JG** was responsible for writing the manuscript, for which AAQ assisted with the method section. The manuscript was revised and approved by all authors.

Paper II
JG designed the study; **JG** and RJP were responsible for data collection under the supervision of AMB; **JG** was responsible for writing the manuscript, which was revised and approved by all authors.

Paper III
AMB, **JG**, AV, BC and AA designed the study; **JG** prepared the data-analysis plan supported by TWC; **JG** was responsible for writing the manuscript, which was revised and approved by all authors.

Paper IV
AMB, **JG**, AV, BC, and AA designed the study; **JG** was responsible for trial execution and data collection under the supervision of AMB, AV, BC and AA; FR and HEA provided access to potential study participants and facilitated study recruitment; **JG** analyzed data supported by TWC; **JG** was responsible for writing the manuscript, which was revised and approved by all authors.

Paper V
JG, AV, AA and BZ designed the research; **JG** was responsible for trial execution and data collection under the supervision of BZ; BZ and **JG** analyzed data; **JG** wrote the first draft of the manuscript, which was critically reviewed and improved by all authors. **JG** was responsible for writing the manuscript, which was revised and approved by all authors.
Summary

Sarcopenia is the progressive loss of muscle mass and strength with advancing age, which in severe cases can lead to loss of physical performance. Moreover, sarcopenia is associated with increased morbidity and mortality. The primary causes are age-related physiological decline, while secondary causes are related to inactivity/disuse, inadequate nutrition, and/or disease. Consequently, geriatric medical patients are particularly vulnerable. The proportion of older adults is increasing, and sarcopenia, therefore, has a growing significant public health impact. Yet even though this is a major research area, geriatric medical patients are highly understudied in the context of sarcopenia. Thus, the overall objective of this PhD project was to investigate aspects related to sarcopenia in geriatric medical patients by means of a systematic literature review, as well as original studies.

Specifically, the screening tool SARC-F, developed to identify individuals at risk of sarcopenia, was evaluated in an observational cohort study with consecutive screening of all patients admitted to a Danish medical ward (Paper I). Feasibility and prevalence of risk were assessed, and the risk group was characterized according to selected outcomes at baseline and after one year. Results showed that the screening tool was feasible for patients without severe cognitive impairment, corresponding to 85% in the clinical setting. The prevalence of risk was high, at around 65%, and several sarcopenia-related adverse outcomes characterized the group at risk, such as lower muscle strength and physical performance, but also increased length of hospitalization (men only) and one-year mortality (women only). These results emphasize the importance and relevance of the identification of sarcopenic patients in clinical practice and the initiation of appropriate treatment.

Regarding sarcopenia prevention and treatment strategies, RT is known to induce hypertrophy and strength, although a combination of RT and PrS potentially be more effective than RT alone. This theory was investigated in a systematic literature review of RCTs, including older adults > 60 years, to examine the combined effect of prolonged RT and PrS/amino acids, compared to RT alone, with or without a placebo supplement (Paper II and an updated literature search). The studies included were heterogeneous, of varying quality, and many had small sample sizes. The evidence of an independent effect of PrS/amino acids during RT was inconsistent and considered to be low to moderate. Results indicated that the weakest patients might derive greatest benefit from the intervention, likely related to low habitual protein intake. However, protein quality and training status also seem to play an important role. Further research is needed to support an interpretation of the importance of the study population and design.

In the systematic review, no studies of geriatric medical patients were retrieved. This verifies the novelty of the double-blinded, multicenter RCT that was performed to investigate the same theory in geriatric medical patients, of whom many were expected to have an inadequate protein intake. A
study protocol was published (Paper III) to verify adherence to original intentions, eliminate publication bias, and inform other researchers about the ongoing study. Specifically, the RCT investigated whether PrS could increase the adaptive response to RT in 165 acutely ill, geriatric medical patients. Eligible patients were enrolled during admission to one of three medical departments and continued the intervention for 12 weeks after discharge. Also, there was a six-month follow-up period without intervention. The intervention consisted of either 27.5 g of whey protein/day or iso-caloric placebo supplements, while all participants had daily supervised, standardized RT during admission, continuing as self-training at home after discharge (target of four times/week). On conducting the study, compliance after discharge from hospital proved difficult, as the resources to engage and appetite were low. The results revealed improvements for most endpoints of muscle strength, mass, physical performance, and QoL in both groups, with no increased benefit from PrS (Paper IV). The lack of effect may be due to the small difference in total protein intake between the groups for most of the intervention period. During hospitalization, the difference in protein intake was 0.4 g/kg/d. For the 12-week period after discharge, however, the difference was reduced to 0.2 g/kg/d, due to low compliance in both groups. Although, it is also possible that confounding factors, such as medical treatment of the acute condition and total RT/physical activity, influenced the results and/or masked possible effects.

Finally, the agreement of body composition measurements between DF-BIA and DXA was investigated in a subpopulation of 31 participants from the RCT (Paper V). Both tools are widely used in research and clinical settings, and LBM measurement is a prerequisite for the diagnosis of sarcopenia and important for evaluating treatment effects. Measurements were conducted during hospitalization and repeated 12 weeks after discharge, with replicate measurements being made on one of the two occasions. The methods proved to have good replicability, indicating that both can be used for monitoring. The great variation in the individual agreement should be taken into consideration, however. Furthermore, Bland Altman plots for direct comparison of the methods, and for monitoring changes, revealed both significant fixed and negative proportional bias. On measuring total LBM, for instance, DF-BIA had higher values than DXA, and vice versa for total fat mass. Moreover, gender differences were discovered, and the division of body segments differed between the methods. Collectively, the results illustrate that body size affects the agreement between the methods, and a cautious approach should be taken to comparing studies that do not use the same measurement tool or include populations with very different body sizes. Moreover, only DXA, using clear anatomical references, can be recommended for segmental analysis. Regarding Papers III+IV, the monitoring of LBM using DF-BIA seems to be acceptable at population level, yet the measurements of segmental LBM should be evaluated critically.
Resumé (Danish summary)

I den systematiske litteraturgennemgang blev der ikke fundet studier med geriatriske medicinske patienter. Dette verificerer nyhedsverdien af det dobbeltblindede, multicenter RCT, der blev udført for at undersøge den samme teori i netop denne population, hvor mange forventes at have et utilstrækkeligt proteinindtag. En studieprotokol blev publiceret (Artikel III) for at verificere, at de oprindelige intentioner blev overholdt, eliminere publikationsbias og orientere andre forskere om den igangværende undersøgelse. Konkret undersøgte RCT’et, om PrS kunne øge det adaptive respons til RT hos 165 akut syge, geriatriske medicinske patienter. Egnede patienter blev rekrutteret under deres indlæggelse på én af tre medicinske afdelinger og fortsatte interventionen i 12 uger efter udskrivelse. Derudover var der en seks-måneders opfølgningsperiode uden intervention. Interventionen bestod af enten 27,5 g valleprotein/dag eller iso-kalorisk placebotilskud, mens alle deltagere dagligt havde superviseret, standardiseret RT under hospitalsindlæggelsen, der fortsatte hjemme som selvtretning efter udskrivelse (målet var fire gange/uge). Det viste sig, at komplians efter udskrivelse var vanskelig, da deltagernes ressourcer til at engagere sig samt appetitten var lav. Resultaterne viste forbedringer for de fleste endepunkter relateret til muskelstyrke, masse, fysisk funktionsniveau og QoL i begge grupper, uden nogen øget effekt af PrS (Artikel IV). Manglen på effekt kan skyldes den lille forskel i det samlede proteinindtag mellem grupperne i det meste af interventionsperioden. Under indlæggelse var forskellen i proteinindtag på 0,4 g/kg/d. I den 12-ugers periode efter udskrivelse blev forskellen imidlertid reduceret til 0,2 g/kg/d pga. lav komplians i begge grupper. Det er dog også muligt, at konfunderende faktorer, såsom behandlingseffekten af den akutte sygdomstilstand og total RT/fysisk aktivitet, har påvirket resultaterne og/eller maskeret en mulig effekt.

Thesis at a glance

<table>
<thead>
<tr>
<th>Paper</th>
<th>Objectives</th>
<th>Methods</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPER I</td>
<td>What is the feasibility of the SARC-F screening tool to identify the risk of sarcopenia in geriatric medical patients? What is the prevalence of risk? And what are the characteristics of the risk group?</td>
<td>Observational cohort study with consecutive screening of all admitted, non-isolated patients ≥ 65 years for 6 months. Baseline testing and 1-year follow-up.</td>
<td>Feasibility in the clinical setting was 85% and prevalence was 64.5% (n=301). Risk was significantly associated with reduced muscle strength, physical function, and health, as well as longer admission (M) and 1-year mortality (F).</td>
<td>SARC-F is feasible for geriatric medical patients without severe cognitive impairment. The risk of sarcopenia is high and negatively associated with clinically important outcomes. Identification and initiation of treatment are thus important and relevant.</td>
</tr>
<tr>
<td>PAPER II & updated search</td>
<td>What do we already know about the effect of prolonged PrS and RT, versus RT alone, from RCTs of older adults? How many studies have been performed in a geriatric setting?</td>
<td>Systematic literature search in four databases. Two independent reviewers. Only PrS in addition to RT, versus RT alone, in older adults with mean age ≥ 60 years. Moreover, an updated literature search in a single database.</td>
<td>Identification of 16 studies for Paper II and four from the updated search. All studies with heterogenous design. Inconsistent evidence of PrS to increase the adaptive response to RT and consequently counteract sarcopenia.</td>
<td>Inconsistent evidence. The frailest may improve more from a combined intervention. Protein quality and training status may also play an important role. Studies of geriatric medical patients are lacking.</td>
</tr>
<tr>
<td>PAPERS III & IV</td>
<td>Can PrS during admission and 12 weeks after discharge increase the adaptive response to RT in geriatric medical patients, and subsequently counteract sarcopenia?</td>
<td>Double-blind, multicenter RCT (n=165). Recruitment from three medical departments. 27.5 g PrS/d or iso-caloric placebo. Both groups had RT supervised daily during admission and 4x/week for 12 weeks after discharge. Measurement of muscle strength, mass and function, QoL, and 6-month follow-up on hospital admission(s) and mortality.</td>
<td>Both groups improved for most endpoints, with no increased benefit from PrS. Total protein intake was as follows: protein group: 1.0 g/kg/d during admission and 1.1 after discharge; and placebo group: 0.6 g/kg/d during admission and 0.9 g/kg/d after discharge. About 50% in both groups were compliant with the RT program.</td>
<td>PrS combined with RT was not superior to RT alone in geriatric medical patients (n=141, ITT analysis). An effect of RT (and extra energy) in both groups was indicated.</td>
</tr>
<tr>
<td>PAPER V</td>
<td>How does DF-BIA compare with DXA in geriatric medical patients for measurement of body composition (replicability, direct comparisons as well as monitoring)? In relation to Papers III+IV, how valid are the measurements of LBM?</td>
<td>Subpopulation of 31 participants from Papers III+IV. DF-BIA and DXA measurements during admission and 12 weeks after discharge. Replication of measurements either during or after discharge.</td>
<td>Both DF-BIA and DXA have good replicability. However, significant fixed and proportional bias was present for both the direct comparison and for the monitoring of changes. Moreover, gender-specific differences were indicated.</td>
<td>DF-BIA and DXA are not interchangeable in geriatric medical patients. Both are subject to confounders and bias. DF-BIA cannot be recommended for segmental analysis but may be used for monitoring of total LBM.</td>
</tr>
</tbody>
</table>