Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Standard

Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering. / Jørgensen, Nicolas Oldenburg; Kjøbsted, Rasmus; Larsen, Magnus Romme; Birk, Jesper Bratz; Andersen, Nicoline Resen; Albuquerque, Bina; Schjerling, Peter; Miller, Russell; Carling, David; Pehmøller, Christian K; Wojtaszewski, Jørgen.

I: Molecular Metabolism, Bind 51, 101259, 2021.

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Harvard

Jørgensen, NO, Kjøbsted, R, Larsen, MR, Birk, JB, Andersen, NR, Albuquerque, B, Schjerling, P, Miller, R, Carling, D, Pehmøller, CK & Wojtaszewski, J 2021, 'Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering', Molecular Metabolism, bind 51, 101259. https://doi.org/10.1016/j.molmet.2021.101259

APA

Jørgensen, N. O., Kjøbsted, R., Larsen, M. R., Birk, J. B., Andersen, N. R., Albuquerque, B., Schjerling, P., Miller, R., Carling, D., Pehmøller, C. K., & Wojtaszewski, J. (2021). Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering. Molecular Metabolism, 51, [101259]. https://doi.org/10.1016/j.molmet.2021.101259

Vancouver

Jørgensen NO, Kjøbsted R, Larsen MR, Birk JB, Andersen NR, Albuquerque B o.a. Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering. Molecular Metabolism. 2021;51. 101259. https://doi.org/10.1016/j.molmet.2021.101259

Author

Jørgensen, Nicolas Oldenburg ; Kjøbsted, Rasmus ; Larsen, Magnus Romme ; Birk, Jesper Bratz ; Andersen, Nicoline Resen ; Albuquerque, Bina ; Schjerling, Peter ; Miller, Russell ; Carling, David ; Pehmøller, Christian K ; Wojtaszewski, Jørgen. / Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering. I: Molecular Metabolism. 2021 ; Bind 51.

Bibtex

@article{00ca2c346a7e4bff9de9d9ea6f622243,
title = "Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering",
abstract = "Objective: Skeletal muscle is an attractive target for blood glucose-lowering pharmacological interventions. Oral dosing of small molecule direct pan-activators of AMPK, that bind to the Allosteric Drug and Metabolite (ADaM) site, lowers blood glucose through effects in skeletal muscle. The molecular mechanisms responsible for this effect are not described in detail. The aim of this study was to illuminate the mechanism by which the ADaM-site activators of AMPK increase glucose uptake in skeletal muscle. Further, we investigated the consequence of co-stimulating muscles with two types of AMPK activators i.e. ADaM-site binding small molecules and the prodrug AICAR.Methods: The effect of the ADaM-site binding small molecules (PF739 and 991), AICAR or co-stimulation with PF739 or 991 and AICAR on muscle glucose uptake was investigated ex vivo in m. extensor digitorum longus (EDL) excised from muscle-specific AMPKα1α2-as well as whole-body AMPKγ3-deficient mouse models. In vitro complex-specific AMPK activity was measured by immunoprecipitation and molecular signaling was assessed by Western Blotting in muscle lysate. To investigate the translatability of our studies, we treated mice in vivo with PF739 and measured complex-specific AMPK activation in skeletal muscle.Results: Incubation of skeletal muscle with PF739 or 991 increased skeletal muscle glucose uptake in a dose-dependent manner. Co-incubating PF739 or 991 with a maximal dose of AICAR, increased glucose uptake to a greater extent than any of the treatments alone. Neither PF739 nor 991 increased AMPKα2β2γ3 activity to the same extent as AICAR, while co-incubation led to potentiated effects on AMPKα2β2γ3 activation. In muscle from AMPKγ3 KO mice, AICAR-stimulated glucose uptake was ablated. In contrast, the effect of PF739 or 991 on glucose uptake was not different between WT and AMPKγ3 KO muscle. In vivo PF739 treatment lowered blood glucose levels and increased muscle AMPKγ1-complex activity 2-fold, while AMPKα2β2γ3 activity was not affected.Conclusions: ADaM-site binding AMPK activators increase glucose uptake independently of AMPKγ3. Co-incubation with PF739 or 991 and AICAR potentiates the effects on muscle glucose uptake and AMPK activation. In vivo, PF739 lowers blood glucose and selectively activates muscle AMPKγ1-complexes. Collectively, this suggests that pharmacological activation of AMPKγ1-containing complexes in skeletal muscle can increase glucose uptake and can lead to blood glucose lowering.",
keywords = "Faculty of Science, AMP-activated protein kinase, Skeletal muscle, Glucose uptake, Metabolism, Metabolic disease",
author = "J{\o}rgensen, {Nicolas Oldenburg} and Rasmus Kj{\o}bsted and Larsen, {Magnus Romme} and Birk, {Jesper Bratz} and Andersen, {Nicoline Resen} and Bina Albuquerque and Peter Schjerling and Russell Miller and David Carling and Pehm{\o}ller, {Christian K} and J{\o}rgen Wojtaszewski",
note = "Copyright {\textcopyright} 2021. Published by Elsevier GmbH.",
year = "2021",
doi = "10.1016/j.molmet.2021.101259",
language = "English",
volume = "51",
journal = "Molecular Metabolism",
issn = "2212-8778",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering

AU - Jørgensen, Nicolas Oldenburg

AU - Kjøbsted, Rasmus

AU - Larsen, Magnus Romme

AU - Birk, Jesper Bratz

AU - Andersen, Nicoline Resen

AU - Albuquerque, Bina

AU - Schjerling, Peter

AU - Miller, Russell

AU - Carling, David

AU - Pehmøller, Christian K

AU - Wojtaszewski, Jørgen

N1 - Copyright © 2021. Published by Elsevier GmbH.

PY - 2021

Y1 - 2021

N2 - Objective: Skeletal muscle is an attractive target for blood glucose-lowering pharmacological interventions. Oral dosing of small molecule direct pan-activators of AMPK, that bind to the Allosteric Drug and Metabolite (ADaM) site, lowers blood glucose through effects in skeletal muscle. The molecular mechanisms responsible for this effect are not described in detail. The aim of this study was to illuminate the mechanism by which the ADaM-site activators of AMPK increase glucose uptake in skeletal muscle. Further, we investigated the consequence of co-stimulating muscles with two types of AMPK activators i.e. ADaM-site binding small molecules and the prodrug AICAR.Methods: The effect of the ADaM-site binding small molecules (PF739 and 991), AICAR or co-stimulation with PF739 or 991 and AICAR on muscle glucose uptake was investigated ex vivo in m. extensor digitorum longus (EDL) excised from muscle-specific AMPKα1α2-as well as whole-body AMPKγ3-deficient mouse models. In vitro complex-specific AMPK activity was measured by immunoprecipitation and molecular signaling was assessed by Western Blotting in muscle lysate. To investigate the translatability of our studies, we treated mice in vivo with PF739 and measured complex-specific AMPK activation in skeletal muscle.Results: Incubation of skeletal muscle with PF739 or 991 increased skeletal muscle glucose uptake in a dose-dependent manner. Co-incubating PF739 or 991 with a maximal dose of AICAR, increased glucose uptake to a greater extent than any of the treatments alone. Neither PF739 nor 991 increased AMPKα2β2γ3 activity to the same extent as AICAR, while co-incubation led to potentiated effects on AMPKα2β2γ3 activation. In muscle from AMPKγ3 KO mice, AICAR-stimulated glucose uptake was ablated. In contrast, the effect of PF739 or 991 on glucose uptake was not different between WT and AMPKγ3 KO muscle. In vivo PF739 treatment lowered blood glucose levels and increased muscle AMPKγ1-complex activity 2-fold, while AMPKα2β2γ3 activity was not affected.Conclusions: ADaM-site binding AMPK activators increase glucose uptake independently of AMPKγ3. Co-incubation with PF739 or 991 and AICAR potentiates the effects on muscle glucose uptake and AMPK activation. In vivo, PF739 lowers blood glucose and selectively activates muscle AMPKγ1-complexes. Collectively, this suggests that pharmacological activation of AMPKγ1-containing complexes in skeletal muscle can increase glucose uptake and can lead to blood glucose lowering.

AB - Objective: Skeletal muscle is an attractive target for blood glucose-lowering pharmacological interventions. Oral dosing of small molecule direct pan-activators of AMPK, that bind to the Allosteric Drug and Metabolite (ADaM) site, lowers blood glucose through effects in skeletal muscle. The molecular mechanisms responsible for this effect are not described in detail. The aim of this study was to illuminate the mechanism by which the ADaM-site activators of AMPK increase glucose uptake in skeletal muscle. Further, we investigated the consequence of co-stimulating muscles with two types of AMPK activators i.e. ADaM-site binding small molecules and the prodrug AICAR.Methods: The effect of the ADaM-site binding small molecules (PF739 and 991), AICAR or co-stimulation with PF739 or 991 and AICAR on muscle glucose uptake was investigated ex vivo in m. extensor digitorum longus (EDL) excised from muscle-specific AMPKα1α2-as well as whole-body AMPKγ3-deficient mouse models. In vitro complex-specific AMPK activity was measured by immunoprecipitation and molecular signaling was assessed by Western Blotting in muscle lysate. To investigate the translatability of our studies, we treated mice in vivo with PF739 and measured complex-specific AMPK activation in skeletal muscle.Results: Incubation of skeletal muscle with PF739 or 991 increased skeletal muscle glucose uptake in a dose-dependent manner. Co-incubating PF739 or 991 with a maximal dose of AICAR, increased glucose uptake to a greater extent than any of the treatments alone. Neither PF739 nor 991 increased AMPKα2β2γ3 activity to the same extent as AICAR, while co-incubation led to potentiated effects on AMPKα2β2γ3 activation. In muscle from AMPKγ3 KO mice, AICAR-stimulated glucose uptake was ablated. In contrast, the effect of PF739 or 991 on glucose uptake was not different between WT and AMPKγ3 KO muscle. In vivo PF739 treatment lowered blood glucose levels and increased muscle AMPKγ1-complex activity 2-fold, while AMPKα2β2γ3 activity was not affected.Conclusions: ADaM-site binding AMPK activators increase glucose uptake independently of AMPKγ3. Co-incubation with PF739 or 991 and AICAR potentiates the effects on muscle glucose uptake and AMPK activation. In vivo, PF739 lowers blood glucose and selectively activates muscle AMPKγ1-complexes. Collectively, this suggests that pharmacological activation of AMPKγ1-containing complexes in skeletal muscle can increase glucose uptake and can lead to blood glucose lowering.

KW - Faculty of Science

KW - AMP-activated protein kinase

KW - Skeletal muscle

KW - Glucose uptake

KW - Metabolism

KW - Metabolic disease

U2 - 10.1016/j.molmet.2021.101259

DO - 10.1016/j.molmet.2021.101259

M3 - Journal article

C2 - 34033941

VL - 51

JO - Molecular Metabolism

JF - Molecular Metabolism

SN - 2212-8778

M1 - 101259

ER -

ID: 269915043